Information and Macroeconomic Expectations: Global Evidence

by Francesco D'Acunto and Michael Weber

Discussion by Fiorella De Fiore
Bank for International Settlements and CEPR

ECB Conference on Inflation Drivers and Dynamics 29 September 2025

The opinions expressed are personal and do not necessarily reflect those of the BIS

The paper

Motivation and questions

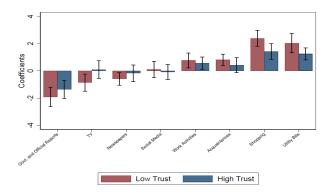
- Two robust findings in the literature on consumers' beliefs
 - Large dispersion of macroeconomic expectations
 - Persistent biases across consumers and over time
- Evidence typically drawn from single-country data
 - Is dispersion robust to homogenous elicitation at global level?
 - Are there common global drivers of systematic bias?
 - Can mainstream models explain the evidence?

The paper

- Global survey of consumers' subjective beliefs
 - 47 countries, 1000 individuals
- Main findings
 - Households' macroeconomic perceptions are biased upwards
 - Bias is heterogeneous across countries
 - And larger for consumers relying on local info sources
 - Evidence on information acquisition and updating of beliefs
 - Consumers in countries with higher inflation seek more info
 - But they make larger errors as they draw on local info sources
- Rational inattention (RI) models predict otherwise
 - Higher inflation should increase info collection and lower bias
 - Reason for discrepancy is neglect for 'trust' and info 'quality'

Local vs global information sources

- Classification of aggregate vs local info source is imprecise
 - Social media (local) report aggregate as much as local info
 - Work related activities (local) may generate aggregate info
 - Local newspapers/TV (aggregate) may provide local info
- Could bias the results by strengthening the link between local (aggregate) sources and high (low) expectations and biases


Trust, information acquisition and bias

• Low trust induces agents to use local info sources which send less accurate signals and increase the perception error

• Evidence:

- Positive relation between higher past inflation and use of all sources except official reports, hinting at loss of trust in govt
- Trust in govt/CB correlates positively with willingness to use official reports
- But also with willingness to use all other info sources
- Reducing info from official sources without replacing it with larger use of local sources may not be conducive to higher bias
- Indeed, results suggest limited role of trust (low/high) on relation between info sources and perception errors.

Figure 12: Information Sources and Perception Errors by Trust in Central Bank/Government

RI models: accounting for the evidence

- Costs of info acquisition usually depends on agents' learning
 - Costs are function of entropy reduction, ie the remaining uncertainty on the state after observing a signal (Sims, 2003)
 - Reasonable when agents are sure of acquiring only new info
- Alternative: costs depend on the info source capacity
 - Costs are a function of the max possible entropy reduction after observing a given signal (Nimark-Sundaresan, 2019)
 - Appropriate if source is eg broadcast, where some info is already known but cannot be separated from the rest
- The latter class of RI models can generate endogenous choice of info source and persistent errors in line with survey evidence

II. RI models 0000

Nimark and Sundaresan, JET 2019

- State: $\omega = \{0,1\} \equiv \Omega$, signal: $s \in \{0,1\}$
- Agent's prior belief: $p(\omega = 1) = \pi$
- Info channel S: defined by error probabilities of signal s
- Entropy of ω (expected info): $H(\Omega) = \sum_{\omega \in \Omega} p(\omega) \log \frac{1}{p(\omega)}$
- Revealed information: $I(\Omega, S) = H(\Omega) H(\Omega|S)$
- Channel capacity: $C(\Omega, S) = \max_{p(\omega) \in \{0,1\}} [H(\Omega) H(\Omega|S)]$

A model of channel capacity: updating of beliefs

- Two alternative definitions
 - Cost of acquired info: $\Gamma_I = \theta I(\Omega, S)$
 - Cost of channel capacity: $\Gamma_C = \max_{p(\omega) \in \{0,1\}} \theta I(\Gamma, S)$

where
$$I(\Gamma, S) = \sum_{s \in \{0,1\}} p(s) \sum_{\omega \in \{0,1\}} p(\omega|s) \log \frac{p(\omega|s)}{p(\omega)}$$

- Implications for info acquisition and belief update
 - Higher priors' precision decreases value and cost of new signals \rightarrow info acquisition and belief update till $p(\omega|s) = p(\omega)$
 - For Higher priors' precision lowers value but *not* cost of new signal \rightarrow if priors are precise enough, agents choose uninformative signals and stop updating beliefs (in line with survey results)

A model of channel capacity: clustering of beliefs

- Confirmation effect: agents choose channels more likely to confirm their priors
- Beliefs resulting from random signals can be self-reinforcing and lead to permanent clustering
- Does this help explain the survey results?
 - Agents with low inflation expectations randomly read official source reporting low inflation \rightarrow If prior is precise enough, they keep sourcing from official reports and stop updating beliefs
 - Clustering of agents around different expectations and biases

Conclusions

- Great paper and data
- Progress in understanding global drivers of beliefs and biases
- Models of RI can partly reconcile the survey evidence